Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2023-048, 151 Pages, 2024/05

JAEA-Review-2023-048.pdf:8.48MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted in FY2022. The present study aims to develop an evaluation method necessary to obtain a perspective on the long term structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2022, the second year of the three-year plan, some tests and other activities on the following research items were conducted following FY2021, based on the specific research methods and research directions clarified in FY2021.

JAEA Reports

Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-071, 123 Pages, 2023/03

JAEA-Review-2022-071.pdf:6.07MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted in FY2021. The present study aims to develop an evaluation method necessary to obtain a perspective on the long-term structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2021, the first year of the three-year plan, the following research items were undertaken by clarifying specific research methods, setting research directions, making necessary preparations, and conducting some tests and other activities.

Journal Articles

Basic study on seismic respnse of soil-structure interaction system using equivalent linear three-dimensional FEM analysis of reactor building

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Nabeshima, Kunihiko*; Choi, B.; Nishida, Akemi

Kozo Kogaku Rombunshu, B, 68B, p.271 - 283, 2022/04

This paper aims to evaluate the applicability of the equivalent linear analysis method for reinforced concrete, which uses frequency-independent hysteretic damping, to the seismic design of reactor building of the nuclear power plant. To achieve this, we performed three-dimensional FEM analyses of the soil-structure interaction system, focusing on the nonlinear and equivalent linear seismic behavior of a reactor building under an ideal soil condition. From these results, the method of equivalent analysis showed generally good correspondence with the method of the nonlinear analysis, confirming the effectiveness. Moreover, the method tended to lower the structural stiffness compared to the nonlinear analysis model. Therefore, in the evaluation of the maximum shear strain, we consider that the results were more likely to be higher than the results of nonlinear analysis.

JAEA Reports

Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2021-070, 98 Pages, 2022/03

JAEA-Review-2021-070.pdf:4.75MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted in FY2020. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete materials altered due to leaching, to develop a model to simulate the migration behaviors based on the experimental findings, and to analyze waste management scenarios for radioactive concrete. The focus of the study is the underground concrete structures of Fukushima Daiichi Nuclear Power Station, which is in contact with contaminated water.

Journal Articles

Experience of HTTR construction and operation; Unexpected incidents

Fujimoto, Nozomu; Tachibana, Yukio; Saikusa, Akio*; Shinozaki, Masayuki; Isozaki, Minoru; Iyoku, Tatsuo

Nuclear Engineering and Design, 233(1-3), p.273 - 281, 2004/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

From a viewpoint of heat leakage, there were two incidents during HTTR power-rise-tests. One was a temperature rise of the primary upper shielding, and the other was a temperature rise of the core support plate. Causes of the both incidents were small amount of helium flow in structures. For the temperature rise of the primary upper shielding, countermeasures to reduce the small amount of helium flow, enhancement of heat release and installation of thermal insulator were taken. For the temperature rise of the core support plate, temperature evaluations were carried out again considering the small amount of helium flow and design temperature of the core support plate was revised. By these countermeasures, the both temperatures were kept below their limits.

Journal Articles

Simulation of the background for $$gamma$$ detection system in the indoor environments of concrete buildings

Tsutsumi, Masahiro; Oishi, Tetsuya; Kinouchi, Nobuyuki; Sakamoto, Ryuichi; Yoshida, Makoto

Journal of Nuclear Science and Technology, 38(12), p.1109 - 1114, 2001/12

In order to predict the indoor background spectra to gamma detection systems, the gamma radiation field in a concrete building is studied by the Monte Carlo simulations. The parameters of wall thickness, room shape and dimensions were considered in the modeling. The indoor source geometry was simulated by a spherical layer model with the intention of easy and effective calculations. The model was applied to an unshielded germanium detector and the detection system with a more complex shielding configuration. As the results, we found that the indoor radiation field in concrete buildings can be predicted well with the source geometry of a spherical concrete layer of 25cm thickness and with the source of the natural major three components of the $$^{238}$$U series, $$^{232}$$Th series and $$^{40}$$K that are homogeneously distributed. The simulation model is useful for designing and optimizing gamma detection systems or shielding assemblies.

Journal Articles

Progress of LWR structural safety research at JAERI

Shibata, Katsuyuki

Nucl. Eng. Des., 174(1), p.79 - 90, 1997/00

 Times Cited Count:1 Percentile:14.47(Nuclear Science & Technology)

no abstracts in English

Oral presentation

Basic study on seismic response of soil-structure interaction system using equivalent linear three-dimensional fem analysis of reactor building

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Nabeshima, Kunihiko*; Choi, B.; Nishida, Akemi

no journal, , 

This study aims to evaluate the applicability of the equivalent linear analysis method for reinforced concrete, which uses frequency-independent hysteretic damping, to the seismic design of reactor building of the nuclear power plant. To achieve this, we performed three-dimensional FEM analyses of the soil-structure interaction system, focusing on the nonlinear and equivalent linear seismic behavior of a reactor building under an ideal soil condition. From these results, the method of equivalent analysis showed generally good correspondence with the method of the nonlinear analysis, confirming the effectiveness. Moreover, the method tended to lower the structural stiffness compared to the nonlinear analysis model. Therefore, in the evaluation of the maximum shear strain, we consider that the results were more likely to be higher than the results of nonlinear analysis. In this presentation, we describe the effectiveness and problems of the equivalent linear analysis method using three-dimensional FEM analysis of the soil-structure interaction system.

8 (Records 1-8 displayed on this page)
  • 1